A new characterization of Mathieu-groups by the order and one irreducible character degree
نویسندگان
چکیده
منابع مشابه
A Characterization of the Suzuki Groups by Order and the Largest Elements Order
One of the important problems in group theory is characterization of a group by a given property, that is, to prove there exist only one group with a given property. Let be a finite group. We denote by the largest order of elements of . In this paper, we prove that some Suzuki groups are characterizable by order and the largest order of elements. In fact, we prove that if is a group with an...
متن کاملA Characterization of the Small Suzuki Groups by the Number of the Same Element Order
Suppose that is a finite group. Then the set of all prime divisors of is denoted by and the set of element orders of is denoted by . Suppose that . Then the number of elements of order in is denoted by and the sizes of the set of elements with the same order is denoted by ; that is, . In this paper, we prove that if is a group such that , where , then . Here denotes the family of Suzuk...
متن کاملcharacterization of some simple $k_4$-groups by some irreducible complex character degrees
in this paper, we examine that some simple $k_4$-groups can be determined uniquely by their orders and one or two irreducible complex character degrees.
متن کاملFinite p-groups with few non-linear irreducible character kernels
Abstract. In this paper, we classify all of the finite p-groups with at most three non linear irreducible character kernels.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2013
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2013-209